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Overview
• Digital halftoning – purpose and constraints

► direct binary search (DBS) algorithm for halftoning
► minimize cost function based on human visual system

• Quasi-Monte Carlo (QMC) – purpose, examples
• Minimum Visual Discrepancy (MVD) algorithm for 

points, analogous to DBS
► examples
► integration tests

• Extensions; higher dimensions, non-uniform sampling
► possible approaches - Voronoi, electrostatic repulsion, …
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Validation of physics simulation codes
• Computer simulation codes

► many input parameters, many output variables
► very expensive to run; up to weeks on super computers

• It is important to validate codes - therefore need  
► to compare codes to experimental data; make inferences
► advanced methods to estimate sensitivity of simulation 

outputs on inputs
• Latin square (hypercube), stratified sampling, quasi-Monte Carlo

• Examples of complex simulations
► ocean and atmosphere modeling
► aircraft design, etc.
► casting of metals
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Example of ocean model simulation
1/6 degree resolution – rms dev. in ocean height
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Digital halftoning techniques
• Purpose

► render a gray-scale image by placing black dots on white 
background

► make halftone rendering look like original gray-scale image 

• Constraints
► resolution – size and closeness of dots, number of dots
► speed of rendering

• Various algorithmic approaches
► error diffusion, look-up tables, blue-noise, …
► concentrate here on Direct Binary Search 
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DBS example
• Direct Binary Search produces 

excellent-quality halftone images
• Sky – quasi-random field 

of dots, uniform density
• Computationally intensive

Li and Allebach, IEEE Trans. 
Image Proc. 9, 1593-1603  
(2000)
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Direct Binary Search (DBS) algorithm
• Consider digital halftone image to be composed of 

black or white pixels
• Cost function is based on perception of two images

► where d is the dot image, g is the gray-scale image to be 
rendered, h is the image of the blur function of the human 
eye, and * represents convolution

• To minimize φ
► start with a collection of dots with average local density ~ g
► iterate sequentially through all image pixels;
► for each pixel, swap value with neighborhood pixels, or 

toggle its value to reduce φ

2( )ϕ = ∗ −h d g
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Monte Carlo integration techniques
• Purpose 

► estimate integral of a function over a specified region R in m
dimensions, based on evaluations at n sample points

• Constraints
► integrand not available in analytic form, but calculable
► function evaluations may be expensive, so minimize them 

• Algorithmic approaches
► focus on accuracy in terms of # function evaluations n
► quadrature (Simpson) – good for few dimensions; rms err ~ n-1

► Monte Carlo – useful for many dimensions; rms err ~ n-1/2

► quasi-Monte Carlo – reduce # evaluations; rms err ~ n-1
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Quasi-Monte Carlo
• Purpose

► estimate integral of a function over a specified domain
in m dimensions

► obtain better rate of convergence of integral estimation than 
seen in classic Monte Carlo 

• Constraints
► integrand function not available analytically, but calculable
► function known (or assumed) to be well behaved 

• Standard QMC approaches use low-discrepancy 
sequences; product space

(Halton, Sobel, Faure, Hammersley, …)
• Propose new way of generating sets of sample points
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Point set examples
• Examples of different kinds of point sets 

► 400 points in each

• If quasi-MC sequences have better integration properties 
than random, is halftone pattern even better?

Random
(independent)

Quasi-Random 
(Halton sequence)

Halftone
(DBS sky)
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Discrepancy
• Much of QMC work is based on the discrepancy, 

defined for samples covering the unit square in 2D as

► where integration is over unit square, 
► n(x, y) is the number of points in 

the rectangle with opposite corners 
(0, 0) to (x, y), and 

► A(x, y) is the area of the rectangle

• Related to upper bounds in integr. error for class of funcs.
• Clearly a measure of uniformity of dot distribution

[ ]2
2

U
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Standard Quasi-MC sequences with low D2
• Halton

► based on expansion in 
terms of fractions of 
powers of  primes, for the 
prime p=2:
1/2, 1/4, 3/4, 1/8, 5/8, 3/8, 7/8,… 

• Sobel
► based on primitive 

polynomials
• Observe similarity to 

halftone patterns for 100 
points
► points could be more 

uniformly distributed
• But objectionable 

patterns develop for 
many point

100 - Halton[2,3] 1000 - Halton[2,3]

1000 - Sobel[1,2]100 - Sobel[1,2]
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Minimum Visual Discrepancy (MVD) algorithm
Inspired by Direct Binary Search halftoning algorithm

• Start with some set of points
• Goal is to create uniformly distributed set of points
• Cost function is variance in blurred point image

► where d is the point (dot) image, h is the blur function of the 
human eye, and * represents convolution

• Minimize ψ by
► starting with some point set (random, stratified, Halton,…)
► iterating through points in random order;
► moving each point in 8 directions, and accept move that 

lowers ψ the most

var( )ψ = ∗h d
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Minimum Visual Discrepancy (MVD) algorithm
• MVD result; start with100 points from Halton sequence
• MVD objective is to minimize variance in blurred image
• Effect is to force points to be evenly distributed, or as 

far apart from each other as possible
• Might expect global minimum is a regular pattern

100, MVD Blurred image
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MVD results
• Final MVD distribution depends on initial point set

► algorithm seeks local minimum, not global (as does DBS)

• Patterns somewhat resemble regular hexagonal arrary
► similar to lattice structure in crystals
► however, lack long-range (coarse scale) order
► best to start with point set with good long-range uniformity

1000, MVD400, MVD100, MVD
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Point set examples
• Various kinds of point sets (400 points)
• Varying degrees of randomness and uniformity
• As the points become more uniformly distributed, the more 

accurate are the values of estimated integrals 

MVD, 0.14%Halton, 0.5%Random, 2.5% Grid, 0.09%

More Uniform, Higher Accuracy

RMS relative accuracies of integral of ( )0 0func2= exp 2 ; 0 1i i i
i

x x x− − < <∏
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Integration test problems

• RMS error for integral of 
► from worst to best –random, Halton, MVD, square grid
► lines show N -1/2 (expected for MC) and N -1 (expected for QMC) 

( )0 0func2 = exp 2 ; 0 1i i i
i

x x x− − < <∏
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Voronoi analysis
• Voronoi diagram

► partitions region of interest into 
polygons

► points within each polygon are 
closest to one generating point, Zi

• MC technique provides easy way 
to do Voronoi analysis
► randomly throw large number of 

points Xi into region
► compute distance of each Xi to all 

generating points {Zi}
► sort into those closest to each Zi to 

identify
► can compute Ai, radial moments,… 

• Extensible to high dimensions

100, MVD
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Metric needed to rank value of point sets 
• Need to be able to identify “good” point sets
• Especially important in high dimensions where 

visualization is difficult or impossible
• From integration tests of several functions and many 

different kinds of point sets, observe: 
► discrepancy D2 does not seem to track rms error
► Voronoi analysis does not seem to track rms error
► but, low rms errors are obtained when both D2 and rms 

deviation of V areas are small 
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Conclusions
• Minimum Visual Discrepancy algorithm

► produces point sets resembling uniform halftone images
► yields better integral estimates than standard QMC seqs.

• Extensions
► Prospects for creating good point sets in high dimensions

• MVD will not work; need discrete representation of image (?)
• electrostatic potential field approach is promising

– analogous to collection of electrons confined to box
– perhaps similar to ‘springs’ model of Atkins et al.

• Voronoi analysis – centroidal Voronoi tesselation
► Sequential development of point set

• add one point at a time, placing it at an optimal location, 
that is, in holes
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